Tentamen Metrische Ruimten, 28/06/04

- 1. Let B be a totally bounded subset of a metric space M. Show that B is bounded. Give an example of a bounded metric space which is not totally bounded.
- 2. Let A be an infinite set with some element $p \in A$. Let \mathfrak{T} consist of all subsets U of A such that $p \in U$, together with the empty set \emptyset .
 - (a) Show that $T = (A, \mathfrak{T})$ is a topological space.
 - (b) Is T compact?
 - (c) Is T connected?
 - (d) Is T Hausdorff?
 - (e) Can \mathfrak{T} be generated by a metric defined on A?

Justify the answers!

- 3. Let the topological space T be Hausdorff. Show that the finite subsets of T are closed.
- 4. Determine the closure and the boundary of each of the following subsets of \mathbb{R} with the usual Euclidean metric. Which of these sets are dense or nowhere dense in \mathbb{R} ? (\mathbb{Q} is the set of rational numbers, \mathbb{Z} the set of integers, \mathbb{N} the set of positive integers.)
 - (a) R;
 - (b) $\mathbb{Q} \cap (-\infty, 0)$;
 - (c) $\{\frac{7}{3n}: n \in \mathbb{N}\};$
 - (d) $\mathbb{R} \setminus \mathbb{Q}$;
 - (e) $\mathbb{R} \setminus \mathbb{Z}$;
 - (f) N.