Tentamen Metrische Ruimten, 28/06/04 - 1. Let B be a totally bounded subset of a metric space M. Show that B is bounded. Give an example of a bounded metric space which is not totally bounded. - 2. Let A be an infinite set with some element $p \in A$. Let \mathfrak{T} consist of all subsets U of A such that $p \in U$, together with the empty set \emptyset . - (a) Show that $T = (A, \mathfrak{T})$ is a topological space. - (b) Is T compact? - (c) Is T connected? - (d) Is T Hausdorff? - (e) Can \mathfrak{T} be generated by a metric defined on A? Justify the answers! - 3. Let the topological space T be Hausdorff. Show that the finite subsets of T are closed. - 4. Determine the closure and the boundary of each of the following subsets of \mathbb{R} with the usual Euclidean metric. Which of these sets are dense or nowhere dense in \mathbb{R} ? (\mathbb{Q} is the set of rational numbers, \mathbb{Z} the set of integers, \mathbb{N} the set of positive integers.) - (a) R; - (b) $\mathbb{Q} \cap (-\infty, 0)$; - (c) $\{\frac{7}{3n}: n \in \mathbb{N}\};$ - (d) $\mathbb{R} \setminus \mathbb{Q}$; - (e) $\mathbb{R} \setminus \mathbb{Z}$; - (f) N.